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Abstract 
 
This article analyzes the effects of unobserved family heterogeneity in children survival times 
through a Bayesian approach. We rely on survey data from Ivory Coast and use a proportional 
hazard model with multiplicative random effect. With such a model, the usual assumption of 
independence of observations is avoided. The posterior distributions of the parameters are 
estimated through a Gibbs sampler algorithm using the WinBUGS software. This technique 
overcomes the possible local convergence problem observed with the commonly used Expectation-
Maximization method. 
 
 
Introduction  
 
Under-five mortality rate for the world dropped from 193 per thousand births in 
1960 to 86 in 1998, which corresponds to 55 percent decrease (UNICEF, 2001). In 
Sub-Saharan Africa, the reduction in mortality rates for children aged 5 and 
younger, between 1960 and 1998, was nearly 34 percent (from 261 to 173 per 
thousand births). For example, in Ivory Coast, the same source indicates that 
under-five mortality rate decreased from 300 to 150 per thousand births between 
1960 and 1998. Although much progress has been made in terms of prevention 
and child care, under-five mortality rates in the Sub-Saharan African region 
remain high, compared to the mortality rate of 6 per thousands births observed 
in the industrialized countries in 1998 (UNICEF, 2001).    
         
       A number of studies have focused on the factors affecting children mortality 
(Manda, 1999; Kuate-Defo, 1992; Akoto and Tabutin, 1990; Pebley and Stupp, 
1987; Martin et al., 1983, among others). These researches showed that child 
mortality in developing countries was mainly associated with measurable socio-
economic conditions such as nutritional status and poor living conditions. 
However, some unmeasured genetic, environmental and behavioural 
components still remain non-negligible. In effect, children belonging to the same 
family share certain unobserved characteristics (or heterogeneity), which may 
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not be sufficiently described by the covariates included in the earlier standard 
models (Guo and Rodriguez, 1992). The ignorance of such family-level 
correlation may lead to biased parameters estimates. This unobserved 
heterogeneity, also referred to as frailty (Vaupel et al., 1979), operates at three 
different levels, at least: child, family and community (Sastry 1997). At the 
family level, children from the same parents inherit common genetic factors and 
usually grow up in the same household environment. Parents are also more 
likely to adopt similar child care behaviour for all their children. Genetic factors 
remain the major component of the family-level frailty. However, each child has 
a proper susceptibility to infection, independently of his family membership 
(Childs et al., 1992). This idiosyncratic genetic factor remains the major child-
level unobserved frailty component. In addition, inside the common global 
family behavioural factor, parents may adopt a slightly different prenatal and 
neonatal attitude from one child to the next: the length of the breastfeeding 
period, the health care practice and the nutritional status, for example. At the 
community level, the random effects are more likely of behavioural and 
environmental nature. 
 
       During the last ten years, the unobserved heterogeneity has been intensively 
associated to child mortality studies: Guo and Rodriguez (1992) and Guo (1993) 
applied a multivariate proportional hazard model to capture the family-specific 
random effects on clustered data from Guatemala; a logistic model with family 
random effects was used to examine the frailty common to all children from 
same mothers in Brazil (Curtis et al., 1993) and Bangladesh (Zenger 1993); 
Ronsmans (1995) investigated the patterns of family-level clustering in a rural 
community of Senegal; Sastry (1997) also presented a hazard model with nested 
frailty to control for unobserved family and community effects in data from 
Brazil. More recently, Kuate-Defo (2001) estimated a model for hierarchically 
clustered data and applied it to child survival in Cameroon. 
 
       The models' parameters and the distribution for the random effects were 
generally estimated via the Expectation-Maximization (EM) algorithm (Manda, 
2001; Sastry, 1997; Curtis et al., 1993; Guo and Rodriguez, 1992). The EM 
algorithm is an iterative method, which heavily relies on the choice of starting 
values. Hence, it may converge toward a local maximum instead of the global 
one (Sinha and Dey, 1997). To circumvent this problem, a full Bayesian 
approach, which uses Markov Chain Monte Carlo methods, can be used. 
Recently, Bayesian frailty models have been developed successfully for child 
survival data in Mali (Gemperli et al., 2004), Minnesota (Banerfee et al., 2003) and 
Malawi (Bolstad and Manda, 2001). Kandala et al. (2002) also used Bayesian 
approach to analyse the determinants of undernutrition in Malawi, Tanzania 
and Zambia. Unlike the EM algorithm, the Bayesian approach avoids the 
computation of cumbersome high-dimensional integrals (Manda, 2001). The 
goal of this work is to investigate family heterogeneity in child mortality data 
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from Ivory Coast, from a Bayesian perspective. The analysis is based on a 
proportional hazard model with multiplicative random effects. In that case, the 
independence between observations from the same family, which is a slightly 
restrictive assumption, is not required. The contribution of the present work is 
implementing Bayesian multiplicative frailty model on WinBUGS, which would 
be useful to practitioners.  
 
        The remainder of the paper is organized as follows. In Section 2, the data 
and the covariates of interest are described. The Bayesian model and the 
computation approach are presented in Section 3. The results are given in 
section 4 and a comparison with standard analysis is also discussed. Section 5 
contains some concluding remarks.  
 
Data and Covariates 
 
Data    
        
A representative sample of 3,040 women, aged 15-49 years, result from the 
Demographic and Health Survey (DHS, 2001) carried out from September 1998 
to March 1999 in Ivory Coast. The survey questionnaire included a complete 
birth history, as well as information on maternal education, household and 
related subjects. A total of 6,804 births by 1,935 women were single (non-twin). 
This sample constitutes the study data in which 1,022 children (i.e. 15 percent) 
died by the time of the interview. Table 1 shows the distribution of children by 
family. The 1,935 mothers having non-twin births represent the family 
subdivision. The number of births per mother varies between 1 and 14 with a 
mean of 3.52. A non-negligible level of family random effect is expected, since 
more than 90 percent of the children belong to families that contribute two or 
more births (Sastry, 1997). Community or district stratifications might be worth 
exploring in future work, using WinBUGS.  
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Table 1: Distribution of Deaths by Family Size, Ivory Coast (1998/99 DHS) 
 

      Number of Children Who Died                   Total 
        
Children   

    0 1 2 3 4 5 6 7 Mothers  Total % 

1 464 61       525 525 7.7 

2 259 75 10      344 688 10.1 
3 172 78 20 3     273 819 12 
4 116 64 25 4 3    109 836 12.3 
5 96 53 19 4 3    175 875 12.9 
6 60 49 19 8 1    137 822 12.1 
7 38 41 18 6 4    107 749 11 
8 22 25 9 7 1    64 512 7.5 
9 17 10 16 10 6    59 531 7.8 
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 10+ 3 11 10 7 5 2 2 2 42 447 6.6 
Total  1247 467 146 49 20 2 2 2 1935 6804 100 
% of children 64.5 24.1 7.6 2.5 1 0.1 0.1 0.1 100     
% of deaths   45.7 28.5 14.4 7.8 1 1.2 1.4 100     

 
Covariates               
 
The covariates used in this study consist of the mother’s age (at birth of child), 
the child's age and sex, the child's birth order, the preceding and succeeding 
birth intervals, the survival status of the previous child, the duration of 
breastfeeding and whether birth occurred in hospital (referred here to all 
medical centres, public or private) or not. Information (taken at the time of 
interview) on household income, father/mother's occupation and education 
level had been omitted because they might have changed during the time 
preceding the interview. Neither was the mother’s marital status used. For the 
same reason, the household variables such as the source of drinking water and 
the place of residence are not included in the model. It is worthwhile that future 
work should consider the effects of these important time-varying covariates.  
 
        Maternal age (at birth of the child) is a commonly used covariate. Previous 
studies showed that children born from women at youngest and oldest age are 
generally subject to highest risk of death (Sastry, 1997; Pebley and Stupp, 1987; 
Trussell and Hammerslough, 1983). However, Martin et al. (1983) found that 
children born from oldest women have a lower mortality risk in data from 
Indonesia and Pakistan. Lalou and Legrand (1997) found the same puzzling 
effect of mother's age on child mortality in Bamako, Mali. Child mortality risk 
also differs by sex of the child: mortality is higher among boys than girls, at least 
during the first months of life (Waldron, 1987; Trussell and Hammerslough, 
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1983). Large birth order is generally risky for child survival. But first born 
children also experience a high mortality rate (Hobcraft et al., 1985). Findings 
from several studies suggest that short preceding and succeeding birth intervals 
largely increase child mortality risk (Guo, 1993; Miller et al., 1992; Pebley and 
Stupp, 1987). However, Koenig et al. (1990) found a lower effect of short birth 
spacing. Breastfeeding duration also affects child mortality risk (Manda, 1999). 
Short breastfeeding duration is generally associated with higher child risk of 
death (Cantrelle and Leridon, 1971).  
      
Table 2: Summary Statistics for Covariates, Ivory Coast (1998/99 DHS) 
 

Covariates Percentage Label Values    Fixed effects 

Sex of child   X1 (fem)  beta.fem 

Females                   49.4   1if girl  

Males   50.6    

Maternal age      

Mean (years)  26.04    

Linear    
X2 

(meage) (age-26)   beta.mage 

Squared   X3 (sqm) (age-26)^2   beta.sqm 

Previous sibling status    

Death                12.3 X4 (prd) 1if yes beta.prd 

Birth order   X5 (bord)  beta.bord 

Preceding birth interval    

First child                   28.4 X6 (first) 1if first birth beta.first 

Short (<18m)              6.7 X7 (pr2) 1if short interval  beta.pr1 

Med.(18-24m)            10.6 X8 (pr3) 1if medium interval  beta.pr2 

Long (>24m)              54.2 X9 (pr4) 1if long interval beta.pr3 

Succeeding birth interval    

Short (<12m)              1.3 X10 (suc1) 1if short interval beta.suc1 

Long (>12m)              70.3 X11 (suc2)  1if long interval beta.suc2 

Last birth                    28.4  or last birth  

Duration of breastfeeding (child who survived 5 months)  

<5 months              1.2  X12 (brst1) 1if yes beta.brst1 

Born in hospital                       59.1 X13 (hosp) 1if yes beta.hosp 

Total births                          6804 84.98%     

Total deaths                        1022 15.02%     
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Table 2 gives the summary statistics of the variables used in the study. There is 
as many boys as girls in this sample. The table also indicates that the mean 
maternal age is 26 years. About 12 percent of the children have experienced the 
death of previous sibling. More than 50 percent of the preceding and succeeding 
birth intervals are long. The table also shows that mothers generally give birth in 
medical centre (called “maternité”) and most children are breastfed, at least 
during the first five months following birth. Non-parametric analysis of the 
children survival times are obtained using the Kaplan-Meier (KM) survival 
curves (Kaplan and Meier, 1958). Figure 1 shows the KM survival curves by 
child’s sex and by survival status of previous sibling. Male children have higher 
risk of death, as well as children whose previous sibling died by index's child 
birth. The graphs (not displayed here) also show that children with longer 
preceding/succeeding birth interval have greater survival chance. 

 
(a) 

 
(b) 
Note: Analysis time is in years 
 
Figure 1: Kaplan-Meier Survival Graphs (a) by Child Sex and (b) by Previous  
                 Child Survival Status, Ivory Coast (1998/99 DHS).  
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The Bayesian Model 
 

Denote by ijt  the random survival time of the thj child from family i and 

),( iwβ=θ  the unknown parameters of the model corresponding to the data. 

The parameter iw represents the family random effect and ,..)2,1( ββ=β is the 
vector of fixed effect coefficients. The family random effect is assumed to act on 
the conditional hazard ),|( iij wth β  in the following multiplicative way: 
 

...)2211exp()()exp()(),|( 00 ++=′= ijijijiijijiiij XXtwtwwth ββλλ Xββ       
                                                                                                                                      (1) 

Our aim is to find the distribution of the family unobserved 
heterogeneity iw . The classical likelihood-based method assumes that the 
unknown model parameters have true fixed values, which are found by 
optimization. The Bayesian approach, however, updates the prior belief 
( ),( iwβπ  ) using the data, in order to obtain the posterior distribution (which 
represents new beliefs after having observed the data). The posterior 
distribution of ),( iwβ  conditioned on the data is proportional to the product of 
the likelihood function and the prior distribution (Gelman et al., 1995)  

),|(),()|,( iijiiji wtlwtw βββ ×∝ ππ .                                                                 (2) 
 
The Likelihood Function 
 

Let us introduce the censoring indicator ijδ such that ijδ equal 1 if the child has 

died and 0 if not. If ijf and ijS are the density and the survival functions 
respectively, then the following equality holds:  

),|(),|(),|( iijiijijiijij wthwtSwtf βββ ×= .                                                 (3) 
 

The contribution of child j from family i to the likelihood function is its 
density function if the child dies, and its survival function otherwise: 

[ ] [ ]
[ ] ))(exp()exp()(

),|(),|(),|,(

0

1

ijiijiji

iijijiijijiijij

twtw

wtSwtfwtl
ijij

ijij

ΛXβ

βββ

−′=

= −

δδ

δδ

λ

δ
                               (4)                                                    

where ∫ ′= )exp()()( 0 ijijij tt XβΛ λ dt is the integrated hazard function for the 

fixed effects.  
 

Previous studies have shown that the effect of the chosen covariates on child 
mortality do not have equal importance over the whole period of childhood 
(Sastry, 1997; Guo and Rodriguez, 1992). Therefore, a piecewise exponential 
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baseline hazard can be used. In particular, based on preliminary analysis not 
shown here, the study time period was split into five intervals with cut points at 
2.4, 6, 12 and 24 months. Within each interval nI  the baseline hazard is assumed 

constant: nijt λλ =)(  for nij It ∈ . Under that assumption, the likelihood 

function coincides with that of a Poisson distribution with mean ijnijnE λ  (Laird 

and Olivier, 1981 [11]). In that expression, ijnE  denotes the time lived in the 

interval nI  by the thj child from the thi family and the parameter ijnλ is the 
corresponding hazard function. 
 
The Prior Specification 
 
The choice of the prior distributions follows from previous studies (Gemperli et 
al., 2004; Bolstad and Manda, 2001). To compute the prior distribution, 

),( iwβπ , the matrix of fixed effectsβ is set to follow a multivariate normal 

distribution with zero mean and low precision: ),0(~ ΣqNβ , whereΣ is a 
diagonal covariance matrix with large variance terms. The integer q is the total 
number of covariate terms in the model. Hence, the joint density function of β is 

)2/1exp()(det)2()( 1'2/12/ βΣββ −−− −Σ= qf π .                                                   (5) 
 

A widely use conjugate prior is adopted for the family 
frailty: ),(~ ττGammawi . The hyper-parameter τ  is also assumed Gamma 
distributed.  
 
 The Full Model 
 
A proportional simplification of the posterior density is obtained from (2): 

),|},({)|()()(}),{,,,( iijijijjiiijiji wtlwffftwf βββ δττδτ ∏∏×∝ .                 
                                                                                                                                     (6) 

Since that posterior distribution is analytically as well as numerically hard 
to obtain, a Markov Chain Monte Carlo (MCMC) simulation is performed. The 
idea is that, if a specific Markov chain is run (after a suitable initial burn-in 
period) for long enough time, it should reach a stationary distribution which is 
the same as the desired posterior distribution (Gelman et al., 1995). Following 
previous studies on hierarchical model (Gelman et al., 1995), the distributions of 
the nodes, conditional on all the parameters, are assumed independent of each 
other. In addition, the prior distributions of any fixed/random effects are 
independent.  
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The Computation 
 
A Gibbs sampling, as implemented in the WinBUGS (Spiegelhalter et al., 2003) 
software, is used to sample from the posterior density of the family random 
effect iw . However, one could also write a Fortran code, as previously done by 
Bolstad and Manda (2001), which requires longer time for coding and testing. 
WinBUGS saves the researcher from these complexities, and thus, allows him to 
concentrate on more substantive issues. An outline of the WinBUGS code 
written by the authors is displayed in Appendix 1. The WinBUGS step function 
in the code is such that 1)( =xstep  if 0≥x  and 0 otherwise. The data 
organization is also a key requirement: since the data are mostly unbalanced, a 
rectangular format may lead to wrong estimates. Hence, a nested indexing 
format must be preferred.  
 

Four chains with different starting values were run simultaneously. After 
2000 iterations for burn-in, 5.000 iterations were performed for each chain and 
one out of every 100th values were used. The obtained time series alone are not 
sufficient criterion to conclude that the chains converge. Therefore, the Gelman-
Rubin factors (Gelman and Rubin, 1992) were also examined. This factor 
compares the variation in the sampled parameter values within and between 
chains (Congdon, 2003). Thus it describes how much the increase in the number 
of iterations may improve the estimates. Values under 1.2 correspond to 
approximate convergence of the Markov chain. WinBUGS produces scale 
reduction factors that are very close to 1 for the fixed effects. For the family 
frailty and its variance, the obtained Gelman-Rubin factor ranged between 0.7 
and 1.3 for the first thousand iterations. Then, values around 1 were obtained 
after 2500 iterations. These results do not contradict the convergence observed 
from the historical time series of the chains. 
 
Results 
 
Figure 2 presents the values of the baseline hazard 0λ by time interval. The 
observation period was split into the following five intervals (in months): [0, 
2.4), [2.4,6), [6,12), [12,24) and [24,  ). Similarly to previous studies (Guo and 
Rodriguez 1992, Sastry 1997, Bolstad and Manda 2001) the mortality risk is 
higher in the first two months of life and then, it continuously decreases. The 
high risk of death at young age may be due to inadequate delivery conditions 
and lack of prenatal vaccination in order to guarantee child immunity against 
childhood diseases. Household characteristics (nutrition and hygiene) may also 
contribute to high mortality risk at lower age. 
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[1]

[2]

[3]

[4]

[5]

box plot: lambda

    0.0

    0.1

    0.2

    0.3

 
NB: Intervals in months [1]=[0;2.4[, [2]=[2.4;6[, [3]=[6,12[, [4]=[12,24[, [5]=[12; ->[ 
 
Figure 2: Box Plots of the Baseline Hazard 0λ , Ivory Coast (1998/99 DHS).  
 
We estimated two models: Model I uses the covariates previously defined, 
without any family frailty term. Model II includes the same covariates as in 
Model I and allows for clustering by family. Table 3 depicts the relative effects 
obtained for both models. The relative risk for each covariate is obtained by 
taking the exponential of its beta value (given as WinBUGS output). The 
deviance information criterion (DIC), as defined by Spiegelhalter et al. (2002), is 
used for models comparison: pDDDIC += , where D is the posterior mean of 
the model deviance and pD is the effective number of parameters. The model 
with the smallest DIC offers the best fit.  
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Table 3: Hazard Models Analysis of Child Mortality in Ivory Coast 
 
  Model Without Model With Family 

Covariates  Family Effects Random Effects 

  Posterior Beta Mean  Posterior Beta Mean   

Sex of child   

Boy* 1 1 

Girl 0.77 (1.17)  0.74 (1.09)  

Previous child survival status  

Alive* 1 1 

Death 2.03 (1.43) 1.44 (1.17) 

Maternal age   

Linear effect 0.96 (1.03) 0.97 (1.01) 

Squared effect 1.01 (1.01) 1.00 (1.04) 

Birth order 0.87 (1.16) 1.05 (1.02) 

Succeeding birth interval  

Long* 1 1 

Short  5.19 (1.36) 4.58 (1.22) 

Preceding birth interval  

First child 1.52 (1.27) 1.43 (1.11) 

Short  1.98 (1.23) 1.79 (1.15) 

Medium 1.39 (1.22) 1.31 (1.10) 

Long* 1 1 

Breastfeeding duration at age 1-5months 

> 1 month* 1  

< 1 month 2.21(2.64) 2.18(2.55) 

Born in Medical Center  

No* 1 1 

Yes 0.74(1.11) 0.79(1.04) 

Variance of Family Frailty 0.322 (0.094) 

DIC  28 922 28 772  

 * Indicates the Reference Group. **Standard Deviation in Parenthesis 
 
For Model I, the table indicates that mortality risk is slightly higher among boys 
than girls, as shown in some previous studies (Trussell and Hammerslough 
1983, Bolstad and Manda 2001). The relative risk of death for girl is 0.77 times 
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the risk for boys. However, that sex effect is not statistically significant (Pebley 
and Stupp, 1987). The results also show that children whose previous sibling 
died experienced a lower survival chance. When the reference group has a 
preceding birth interval greater than 24 months, a preceding birth interval less 
than 18 months increases the child mortality risk (about 2 times). Similarly, 
when the group with succeeding birth interval greater than 12 months is taken 
as the reference, the relative risk of death, among children with shorter 
succeeding birth interval, is five times higher. First births are also 1.5 times 
riskier. Relative risks of 0.96 and 1.01 are obtained for maternal age linear and 
squared effect respectively. Additional computations suggest a positive 
correlation ( 7.0=ρ ) between maternal age squared and death of previous 
child. Birth order is strongly negative correlated to maternal age squared 
( 8.0−=ρ ) as well as to linear maternal age ( 7.0−=ρ ). 
 
        Last column of Table 3 depicts the results of Model II, which includes 
multiplicative family frailty. Compared to Model I, the mortality risk associated 
with child sex remains unchanged, as well as the risk related to maternal age, 
succeeding and preceding birth intervals, breastfeeding duration and hospital 
birth. However, a remarkable difference is that the relative effect of the birth 
order slightly increased (from 0.87 to 1) by including the family frailty term. 
Moreover, the posterior mean for the survival status of the previous child is 
lower in the model with frailty: a relative effect of 2.03 against 1.44 (when the 
model incorporates family frailty). Similar result was found by Sastry (1997) in 
Brazil and Guo (1993) in Guatemala. This suggests that in the model with family 
frailty, the risk related to the previous child death has been captured by the 
family effect (Bolstad and Manda, 2001). The deviance information criterion 
values suggest that Model II, which includes the family frailty, produces the best 
fit. 
 
        The posterior distribution of the family frailty is shown in Figure 3. A 
posterior mean of 0.322 is obtained for the variance of the frailty, after 
controlling for the variables defined in Table 2. This result means that, the death 
of one child in a family increases the risk of death of the index child by about 
32% (Guo, 1993). Guo and Rodriguez (1992) found a variance of 0.22 for family 
random effect in Guatemala, Sastry (1997) obtained 0.516 for Northeast Brazil 
and Bolstad and Manda (2001) reported a variance of 0.843 for Malawi.  
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kappa chains 1:4 sample: 22000

    0.0     0.2     0.4     0.6

    0.0
    2.0
    4.0
    6.0

 
Figure 3: Distribution of Variance of Family Frailty, Ivory Coast  
                 (1998/99 DHS) 
 
The sensitivity of the family frailty effect to the different models is also explored. 
This is done by studying the variance of the family frailty when, first, each 
covariate is added to an initial null model with child age only. Secondly, we 
report how the variance of the frailty changes, when each covariate is removed 
from a full model (which includes all the covariates). Table 4 shows the 
outcomes of this analysis. These results suggest that the explained family 
random effect is mostly represented by the preceding birth interval. Sastry 
(1997) found similar predominance of the preceding birth interval.  
 
Table 4: Covariates Effects on the Variance of the Family Frailty 
 

 Covariates Variance of Family Frailty 

 
Covariate Added 

to Null Model 
Covariate Excluded 

from Full Model 
Null model  0.74  
Sex 0.62 0.38 
Maternal age 0.73 0.42 
Previous sibling dead 0.85 0.37 
Birth order 0.70 0.41 
Preceding birth interval 0.55 0.64 
Succeeding birth interval 0.69 0.35 
Duration of breastfeeding 0.72 0.33 
Hospital birth 0.68 0.36 
All covariates  0.32 
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Concluding Remarks 
 
We used a Bayesian approach, implemented in WinBUGS, to explore the effects 
of family membership on child mortality risk. A proportional hazard model 
with multiplicative family frailty was applied to data from Ivory Coast 1998/99 
Demographic and Health Survey. The analysis shows that the covariates related 
to birth spacing (short succeeding/preceding birth intervals) are high risk 
factors. In fact, reduced birth spacing leads to large family size, which affects 
mother's health condition during each pregnancy. As a consequence, the 
children have high risk of death due to small weight at delivery, competition 
between siblings for nutritional and affective resources or high risk of 
transmission of infectious diseases among siblings (Ronsmans, 1995). That result 
confirms the conclusion of previous works: a great attention should be given to 
teaching family planning to women. This is not widely applied even when its 
benefits are known. That study also supports the view that the death of previous 
child increases the indexed child mortality risk. The premature death of a child 
may expose the non-breastfeeding mother to the risk of new pregnancy, while 
her body is still physically (and mentally) weak. Thus, the future children may 
not be healthy at delivery, due to improper foetal development (Scrimshaw, 
1996). Important family random effect was also found (with a variance of 0.32). 
 
        WinBUGS models hierarchical child mortality data, without requiring 
cumbersome computation of integral (unlike the Expectation-Maximization 
algorithm). This method offers various extensions worth studying: infant 
mortality model with spatial (community) structure needs to be implemented in 
WinBUGS. Hence, graphical representation of regions with high mortality rate 
could be conducted, which would help define targeted policies. 
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Appendix 1: Outline of the Code written in WinBUGS 
 
 
{   # c= censor variable, 
    # t= survival time 
    # a= split survival time 
    # fa= family order, ranges between 1 and 1935 for k in {1;6804} 
       
         a[1] <- 0; a[2] <- 0.2; a[3] <- 0.5; a[4] <- 1; a[5] <- 2; a[6] <- 35; 
 
   for (k in 1:6804) { 
  
    #division of time axe 
      for (n in 1:5) { 
  
         # death indicator in interval I(n) 
  d[k,n] <- (c[k])*step(t[k] - a[n])*step(a[n+1] - t[k]); 
     
  # time lived by child k in interval I(n) 
  delta[k,n] <- (min(t[k], a[n+1]) - a[n])*step(t[k] - a[n]); 
        
   # proportional hazard with family frailty w[i]  and  
   # piecewise exponential hazard rate lambda[n] 
  
 theta[k,n] <- w[fa[k]]*lambda[n]*exp(beta.meage*mag[k] 
 + beta.fem*fe[k]+ beta.magesq*msq[k] + beta.bord*bo[k] 
 + beta.prdead*prd[k]  + beta.first*fi[k]+ beta.prevint2*pr2[k]  
 + beta.prevint3*pr3[k]  + beta.sucint1*suc1[k]  
             + beta.brs1[k]+ beta.hosp[k]); 
     
    # define the likelihood 
    d[k,n] ~ dpois(mu[k,n]); 
    mu[k,n] <- delta[k,n]*theta[k,n]; 
          }  } 
  
    # Family random effects: 
    for (i in 1:1935) { 
   w[i] ~ dgamma(tau, tau);     }  } 
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